
Georg-August-Universität
Göttingen
Zentrum für Informatik

ISSN 1612-6793
Nummer ZFI-BSC-2009-03

Bachelorarbeit
im Studiengang "Angewandte Informatik"

Bestimmung relevanter Worte eines Textes
und Darstellung unter der Oberfläche

TextGrid-Workbench

Ubbo Veentjer

am Lehrstuhl für

Praktische Informatik

Bachelor- und Masterarbeiten
des Zentrums für Informatik

an der Georg-August-Universität Göttingen

29. April 2009

Georg-August-Universität Göttingen
Zentrum für Informatik

Lotzestraße 16-18
37083 Göttingen
Germany

Tel. +49 (5 51) 39-1 44 14

Fax +49 (5 51) 39-1 44 15

Email office@informatik.uni-goettingen.de

WWW www.informatik.uni-goettingen.de

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Göttingen, den 29. April 2009

Bachelor Thesis

Determination of Relevant Words within a Text
and Representation in the User Interface

TextGrid-Workbench

Ubbo Veentjer

April 29, 2009

Supervised by
Prof. Dr. Bernhard Neumair

Dr. Heike Neuroth
Andreas Aschenbrenner

This bachelor thesis deals with the developing process of an Eclipse based plug-in for the
TextGrid workbench. To give a better understanding of what a given, presumably unknown
text is about, the plug-in supports an easy way to find the most relevant words within the text.
Additionally the plug-in extends the TextGrid research facility with a way to look up mean-
ings of search terms entered. Both features are shown in two newly implemented Eclipse
perspectives. In each one presented, the user can choose word by word between linked hy-
pernyms and hyponyms. Thus, one is able to effectively navigate through the semantic con-
text. To achieve this the RDF version of WordNet together with a text mining tool are utilized.

Diese Bachelorarbeit beschreibt die Entwicklung eines auf Eclipse basierenden Plug-ins für
die TextGrid Workbench. Das Plug-in bietet die Möglichkeit sich die relevantesten Wörter
eines Textes anzeigen zu lassen, um einen schnellen Überblick über dessen Inhalt zu erhalten.
Zudem erweitert das Plug-in die TextGrid Suchmaske mit der Möglichkeit, sich die Bedeu-
tungen eingegebener Worte anzeigen zu lassen. Beide Erweiterungen werden in zwei neu
implementierten Eclipse Perspektiven dargestellt, in denen sich der Nutzer die Hypernyme
und Hyponyme der dargestellten Worte anzeigen lassen kann. Das ermöglicht die Naviga-
tion durch den semantischen Kontext. Zur Umsetzung werden die RDF Version von WordNet
sowie Text Mining Tools genutzt.

Contents

1 Introduction 1
1.1 Use-Cases . 2
1.2 Connection with Roman Hausner’s Thesis . 3
1.3 Thesis Organization . 4

2 Background Knowledge 5
2.1 Determining the Relevance of a Word . 5
2.2 WordNet RDF . 6
2.3 Web Services, REST, Ajax and JSON . 8
2.4 Eclipse / Plug-in-Technology . 9
2.5 The TextGrid Workbench . 9

3 Design Choices 11
3.1 Objective and Requirements . 11

3.1.1 Further Requirements . 12
3.1.2 Meeting the Requirements . 13

3.2 Defining the Architecture . 14
3.2.1 Web Services . 15
3.2.2 Web Service Clients . 16
3.2.3 Plug-in for the TextGrid Workbench . 17

4 Implementation 18
4.1 Preparation . 18
4.2 Web Services . 19

4.2.1 WordNet / RDF Store . 19
4.2.2 Determining the Relevant Words . 19
4.2.3 arffCache . 21

4.3 Web Clients . 23
4.3.1 Creating Web Client Project Structure . 23
4.3.2 mostRelevant.html . 24
4.3.3 Implementing research.html . 26

4.4 Implementing the WordNet Plug-in Structure . 28
4.4.1 The Relevant Words Perspective . 30

iii

Contents

4.5 The WordNet Research Perspective . 31
4.5.1 WordNet Research View . 32

4.6 Integration into TextGrid-Workbench . 34

5 Evaluation and Conclusion 35
5.1 Usage . 35
5.2 Evaluation . 36
5.3 Possible Further Work . 37
5.4 Conclusion . 38

A Abbreviations 39

B List of Figures 40

C Bibliography 41

iv

1 Introduction

The TextGrid1 project is part of the German D-Grid Initiative2. It provides tools for collabora-
tive work on texts for scientists and scholars in humanities 3. Furthermore, it allows to make
use of grid resources for storage. The user interface combining the TextGrid tools is called the
TextGrid workbench.

The tools developed in TextGrid till now are mainly focussing philology. Within this thesis re-
search is done on also integrating techniques which come from another discipline of computer
science, namely information retrieval. This discipline deals with extracting useful informa-
tion from large collections of texts. This aims at a different target than the tools integrated in
TextGrid till now, which mainly operate on single texts4.

This thesis describes the development process of two new tools that integrate within the
TextGrid-workbench. These are:

1. Relevant Words View offers possibilities to view relevant words of a given text and browse
their semantic context according to hyponyms and hypernyms5.

2. WordNet Research View enhances the research facility of the TextGrid-workbench. It al-
lows the user to look up meanings as well as hypernyms and hyponyms of the words
one enters.

While both tools have a different use-case, they build on the same technology foundation.
Both utilize and integrate a semantic network, namely WordNet. They are also based on
the same architecture and show the generic applicability of these techniques for the TextGrid
project.

1http://www.textgrid.de (March 2009)
2http://www.d-grid.de (March 2009)
3[16], p.1
4an exception is tg-search, which allows xquerys over all texts, see 2.5
5An example: animal is a hypernym of dog, whereas dog is a hyponym of animal.

1

http://www.textgrid.de
http://www.d-grid.de

1 Introduction

Figure 1.1: Relevant Words Perspective

1.1 Use-Cases

The following two use cases illustrate the benefits of these applications.

1. Alice opens an unknown text in the TextGrid workbench. She wants to get a quick overview
of its contents. The sidebar showing the most relevant words of the text gives her a first im-
pression. She clicks on an unknown word and reads its explanation. Browsing the hyponyms
and hypernyms helps her to put the words in a semantical context (as shown in 1.1).

2. Bob is looking for a book. His search terms yield too many results. He wants to refine
his search. The WordNet Research View already shows the words he enters. He is now able to
browse through their meanings and add some hyponyms that better describe the document
he is searching for (see figure 1.2).

2

1 Introduction

Figure 1.2: WordNet Research Perspective

1.2 Connection with Roman Hausner’s Thesis

Roman Hausner has been working on Web services for text mining at the same time this
bachelor thesis was written [12]. In his thesis he accentuates a Web service called preprocessing
service, which uses different reduction services to be capable of computing information about
relevant words of a text in a corpus.

An overview of how the services are interacting and where both theses integrate with each
other is available in figure 1.3. More technical details can be found in 3.1.2.

3

1 Introduction

RDFStore (WordNet)TextCorpus

Preprocessing Service

uti l ize

Arff-File

output

read / index

query

read

query

Roman Hausner’s Bachelor Thesis
(Semantic Text Mining)

Bachelor Thesis
(Determination of Relevant Words)

arffCache

Stoppwords

Lemmatizer

Reduction-Services

WordNet

mostRelevant.html

TextGrid-Workbench

show

Figure 1.3: Interaction of both theses

1.3 Thesis Organization

The thesis is divided in five parts. Chapter two introduces basic theories and techniques the
applications are build upon. A model for the determination of relevant words is presented.
After the theoretical background is laid out, chapter three deals with the design of the overall
architecture. The requirements are defined and fitting technologies are chosen on this ba-
sis. The actual implementation is described in chapter four. This starts with the needed Web
services used by the web clients. Those clients are then integrated within the TextGrid work-
bench. The last chapter explains where to download and how to use the applications. Then a
short evaluation is done. Some ideas for further enhancements of the applications are given,
finally a conclusion is drawn.

Source code and function names are accentuated like Java.lang.Object if they appear in text.

4

2 Background Knowledge

This chapter imparts background knowledge about concepts and terms further used. Section
2.1 is important for the Relevant Words View whereas the other sections give an overview about
techniques used in general.

2.1 Determining the Relevance of a Word

To determine the relevance of a word, concepts of information retrieval are used. Informa-
tion retrieval deals with the issue which index terms (keywords) describe a document best.
Different models have been developed in this area, such as boolean model, vector model,
and probabilistic model.1 The common idea is the application of a weight to each index term
that should “quantify the importance of the index term for describing the document semantic
context.”2 This weight captures the relevance of a word for a given text.

In this thesis the vector model is used because, as stated by Baeza-Yates and Ribeiro-Neto: “A
large variety of alternative ranking methods has been compared to the vector model, but the
consensus seems to be that, in general, the vector model is either superior or as good as the
known alternatives. Furthermore, it is simple and fast. For these reasons, the vector model is
a popular retrieval model nowadays.”3

Vector Model / tf-idf

In the vector model, documents are represented as vectors, where every term is a dimension
in a vector space. Important for the determination of the relevance of a word is the method
used to obtain index term weights.

An often used weighting method is tf-idf (term frequency - inverse document frequency). The
tf-factor hereby stands for the frequency of a term within a text. It gives an indicator how well
the term describes the documents contents.4 It is calculated with the formula

1compare [4] , p. 24.
2[4], p. 25
3[4], p. 30
4[4]., p.29

5

2 Background Knowledge

t fi,m =
f reqi,m

maxl f reql,m

where f reqi,m is the number of occurrences of a specific term i in the document dm and
maxl f reql,m the number of occurrences of the most used term in this document. 5

“The motivation for usage of an idf factor is that terms which appear in many documents are
not very useful for distinguishing a relevant document from a non relevant one.” 6

The inverse document frequency (idf) indicates the relevance of a term within the whole cor-
pus. It is defined by the formula

id fi = log
N
ni

with N being the number of all documents in the corpus, and ni the number of documents
with an occurance of the term i.

The weight w of of Term i in document dm , described in tf-idf is now:

wi,m = t fi,m· id fi = t fi,m =
f reqi,m

maxl f reql,m
· id fi = log

N
ni

2.2 WordNet RDF

RDF and the Semantic Web

The Semantic Web7 provides a set of techniques for interlinking data on the World Wide
Web. It is based on RDF, a graph description language working with triples (also known as
statements). These are stated in the form of “subject predicate object” (spo). The statements
form a directed graph, where the subjects and objects are the nodes, and the predicates the
edges. [5]

Subject Object
Predicate

5 See [11] , p. 23
6[4], p. 29
7http://www.w3.org/2001/sw/ (March 2009)

6

http://www.w3.org/2001/sw/

2 Background Knowledge

Subjects and predicates are expressed as URIs (Unique Resource Identifier). Objects may be
URIs or literals, describing the subject. The unique character of URIs allows the concatenation
of statements to larger graphs.

The W3C8 standardized query language for RDF graphs is SPARQL. It is used to query RDF
graphs across diverse data sources. The result can be returned as SPARQL result or in RDF
[17].

WordNet

WordNet [7] is a free and publicly available semantic network that consists of a large lexical
database of English. “Nouns, verbs, adjectives and adverbs are grouped into sets of cognitive
synonyms (synsets), each expressing a distinct concept. Synsets are interlinked by means
of conceptual-semantic and lexical relations.”[18] Some common semantic relations WordNet
defines are hyponyms (where A is subordinate of B and A is kind of B) and hypernyms (where
A is superordinate of B).

The W3C offers a publicly avavilable free RDF version of WordNet to download.9

hyponymOf

containsWordSense
wi:wordsense-primate-noun-1

wi:word-primate

word

primate

Language: en-us

lexicalForm

wi:synset-archpriest-noun-1
(a senior clergyman and dignitary)

Language: en-us

gloss

wi:synset-priest-noun-1

hyponymOf

wi:synset-primate-noun-2

wi:synset-placental-noun-1

wi:wordsense-primate-noun-2
containsWordSense

(any placental mammal
of the order Primates;

has good eyesight
and flexible hands and feet)

Language: en-us

gloss

word

Figure 2.1: Graph showing relations for the word primate@en-US (WordNet RDF)

8http://www.w3.org/ (March 2009)
9http://www.w3.org/2006/03/wn/wn20/download/ (March 2009), [8] this version is used throughout the thesis

7

http://www.w3.org/
http://www.w3.org/2006/03/wn/wn20/download/

2 Background Knowledge

Figure 2.2: Wordsenses for the word primate
shown in web client

To demonstrate how words are connected
in WordNet (RDF), in figure 2.1 the rela-
tions to the literal primate@en-US are shown.
The word primate has two different mean-
ings (synsets):

1. has the hypernym placental

2. has the hypernym priest

Figure 2.2 shows how the WordNet web
clients implemented in this thesis represent
the same graph. The wordsenses are shown,
but the hypernyms of the synset primate
seem to be more. That is because the synset
placental has more than just one wordsense.
The web client lists all wordsenses of the
synset.

2.3 Web Services, REST, Ajax and JSON

Web services as defined by the W3C “provide a standard means of interoperating between
different software applications, running on a variety of platforms and/or frameworks. [...]
They can be combined in a loosely coupled way in order to achieve complex operations. Pro-
grams providing simple services can interact with each other in order to deliver sophisticated
added-value services.”10 There are two main architectures for Web services. The so called
“Big Web services” based on SOAP/WSDL [13] [6] and the newer RESTful Web services.11

Big Web services are often found in enterprise environments whereas RESTful Web services
are “gaining increased attention not only because of their usage in the Application Program-
ming Interface (API) of many Web 2.0 services”12. RESTful Web services can be used with
less communication overhead than SOAP based Web services, especially if they use JSON13

for communication. JSON “is a lightweight data-interchange format. It is easy for humans to
read and write.”[1]

Also a RESTFul API is better integrated with websites using Ajax. The term Ajax was in-
vented by Jesse James Garrett in an article in 2005 [9], and stands for “Asynchronous Java-
Script and XML”. In the article he describes techniques to update the content of webpages

10http://www.w3.org/2002/ws/Activity (March 2009)
11compare [15], p.1
12[15], p.1
13 http://www.json.org (March 2009)

8

http://www.w3.org/2002/ws/Activity
http://www.json.org

2 Background Knowledge

asynchronously. In contrast to traditional webpages, where all content displayed is loaded at
once, this allows updating parts of the page on demand (e.g. if the user clicks a link). This is
done by JavaScript requesting a server for data to be inserted. The response may be in XML
or JSON and is shown on the page afterwards.

2.4 Eclipse / Plug-in-Technology

Eclipse is a framework that allows the development of cross platform applications. It is imple-
mented in Java and offers core-functionality for many aspects of a modern software product14.
It is based on plug-ins that expand the core.

Plug-ins specify different additions to the workspace, like perspectives, views and actions. A
perspective is an arrangement of views. It can define positions and sizes of views.

Widgets in Eclipse are written in a GUI-toolkit named SWT15.

2.5 The TextGrid Workbench

The TextGrid project “aims to create a community grid for the collaborative editing, annota-
tion, analysis and publication of specialist texts”[2].

Its architecture for achieving this can be described in four layers:

1. the user interface, called the TextGrid workbench, allowing the client side usage of the
tools / services distributed within TextGrid

2. the services, which provide core services as authentication and research in archives as
well as e.g. tools for linguistic processing of texts

3. the middleware abstracting the grid infrastructure

4. the archive layer which holds the data that is distributed on different servers (the grid).

The TextGrid workbench is used to utilize TextGrid services and tools, as well as accessing
texts stored in the grid. It is an Eclipse based Rich Client Platform (RCP), which allows func-
tionality to be integrated in form of Eclipse plug-ins. These plug-ins often act as frontends
for Web services. They are also the entry point for third party applications to be added to the
workbench.16

14like a workbench offering perspectives, views, editors, an update manager, a gui-toolkit...
15http://eclipse.org/swt (March 2009)
16A list of tools already distributed with the TextGrid workbench is available on the download page for the beta

version: http://www.textgrid.de/en/beta.html (March 2009)

9

http://eclipse.org/swt
http://www.textgrid.de/en/beta.html

2 Background Knowledge

The workbench offers a research tool, which allows searching for and within texts in the
archives. It provides a full text search as well as fields for specifying e.g. author or title of
a text. As the TextGrid archives mainly consist of XML files, it also offers a way to retrieve
specific elements of a text with XQuery17.

17http://www.w3.org/TR/xquery/ (March 2009)

10

http://www.w3.org/TR/xquery/

3 Design Choices

In this chapter the requirements for the project are determined. The emphasis is to find pos-
sible technologies for the implementation and to develop the overall architecture.

3.1 Objective and Requirements

Two objectives are targeted:

1. The user should see the relevant words of a given text and get more information on the
words.

2. One should be offered a way to look up search terms while typing in the free text search
field of the research perspective.

The solution to be implemented should integrate well into the TextGrid workbench. So three
requirements become apparent:

• a thesaurus for looking up words

• a way to determine the relevant words, and match them against the thesaurus

• integration into the TextGrid workbench

Furthermore, because of the nature of the TextGrid architecture, the text is presumably stored
in the grid. The solution should take this into account. The information about relevance
should be computed server side, and in consequence also be stored there. It makes sense to
store the thesaurus online and provide a way to request needed contents from clients. This
leads to the next requirement:

• client / server architecture

The main target for TextGrid is working with historical German texts. As words, meanings,
and language in general change over the time, thus, the solution should be flexible. It should
be easy to change the thesaurus used without the need to rewrite the whole implementation.
The application should be able to be extended to other languages. This should be achieved
by

• modularity and extensibility.

11

3 Design Choices

The user interface should be easy to use, so that the user becomes familiar with it quickly.

Performance is also a factor of usability. Having to wait for results has a negative impact on
the user experience. To sum up the solution should provide

• an intuitive GUI

• performance

3.1.1 Further Requirements

Open Source

One important prerequisite for all considered solutions is the availability of all of its com-
ponents as Open Source, because everything developed should fit into the TextGrid-Project,
with the possibility of further use.

Client Side

The only assumption about the client is a running TextGrid workbench, so Java and a suf-
ficient amount of RAM are installed, also network access is given. For the kind of network
connection the lowest assumption is to make, as for some work in the lab broadband access is
needed, but it is still possible to use the lab e.g. on a train via GPRS-connection, for working
on local files.

A main difference between this service and e.g. a file retrieval service in TextGrid is, that the
user may understand having to wait a minute when a file is loaded from the grid, but, as
already mentioned, not just to look up a word.

Server Side

In TextGrid the assumption may be made that server side infrastructure is on a high level.
Solutions that even make use of the Grid for distributed- and/or cluster-computation would
be possible, but out of scope for this thesis. Therefore the solution should make realistic use
of available technology, which means, RAM and computing-time is still a limiting factor. The
needed server-side implementation should be resource efficient.

12

3 Design Choices

3.1.2 Meeting the Requirements

WordNet

A thesaurus can be seen as a graph, where the words are encoded as nodes, and their relations
as edges. So it makes sense to use a RDF based thesaurus, which can be queried with SPARQL.
This adds the flexibility that another RDF based thesaurus can be dropped in. In this case at
most the SPARQL queries would need to be modified, while the rest of the architecture could
be sustained. If using the standardized SKOS-RDF1 format for thesauri, even the SPARQL
queries can stay the same, only the data set pointed to would change. Another benefit of
using a RDF thesaurus is the availability of unique identifiers for words.

The thesaurus of choice is the English WordNet, as it is available in RDF and can be used
without license issues. Actually, WordNet is more than a thesaurus; it is a semantical network.
The design of WordNet is a kind of archetype for semantical networks in other languages2,
like e.g. GermaNet3. GermaNet is released under a far more restrictive license4. As this thesis
is more the development of a prototype, WordNet is sufficient for testing technologies. Other
formats like SKOS or other semantic networks in other languages are embeddable with ease,
if available in RDF.

Determining Relevant Words

Roman Hausner’s preprocessing service mentioned in chapter 1.2 is used to determine the rele-
vant words. It allows to

• upload a corpus of texts bundled as zip file

• use a regular expression to qualify a word

• specify a list of reduction services to use

• choose one or more normalizations for the data to be returned.

The output of the preprocessing service is a zip file containing one or more ARFF[3] files,
depending on the chosen normalizations. One normalization option is tf-idf. 5

Roman Hausner also developed a reduction service template. It can be used for setting up
own reduction services by implementing its interface method reduce. Every reduction ser-
vice takes a vector of words as input and returns a new vector of words. Also returned is

1http://www.w3.org/2004/02/skos/ (March 2009), [14]
2an overview can be found at http://www.globalwordnet.org/gwa/wordnet_table.htm (March 2009)
3http://www.sfs.uni-tuebingen.de/GermaNet/ (March 2009)
4http://www.sfs.uni-tuebingen.de/GermaNet/licence.html (March 2009)
5compare [12], chapter 3.4 and 3.5

13

http://www.w3.org/2004/02/skos/
http://www.globalwordnet.org/gwa/wordnet_table.htm
http://www.sfs.uni-tuebingen.de/GermaNet/
http://www.sfs.uni-tuebingen.de/GermaNet/licence.html

3 Design Choices

some mapping information, holding which word of the old vector resides on which position
now.6

This reduction service template is used in this thesis to implement a reduction service that
utilizes WordNet. The incoming word vector is mapped to WordNet URIs per word, if avail-
able. The generated statistics file of the workflow consisting of stopword-, lemmatizer- and
wordnet-reduction is used in this thesis to determine the relevant WordNet URIs of a given
text.

Text Corpus

A set of plain English text files is downloaded from the Gutenberg-Project7. This project offers
digital versions of books where the copyright has expired. Digital versions are submitted by
volunteers. The downloaded texts are put together in a zip-file. This is the base corpus to
feed the web services to gain information about the relevant words.

Eclipse Plug-in

As the TextGrid workbench is Eclipse based and the views to be implemented need to in-
teract with other views, the solution should be implemented as an Eclipse plug-in. As for
usability and flexibility it is chosen to implement the representation of the functionality in
HTML/JavaScript/CSS. This brings the benefits of not being bound to SWT for the GUI el-
ements. CSS/HTML adds the freedom of quickly prototyping a GUI, which is still easy to
redesign and modify. Implementing the logic in JavaScript adds a lot of flexibility. So the
representation and the internal functionality (say: another SPARQL Query for another the-
saurus) may change, without the user being required to download a new plug-in. The Eclipse
part of the plug-in only consists of the glue between the browser and the rest of the lab, e.g.
for communication between the views.

3.2 Defining the Architecture

After clarifying the fundamentals of the application to build, the overall architecture can be
developed. It is basically split in two parts: server and client side, as visible in figure 3.1.
Located on the server are the Web services and the Web service clients, whereas the client
consists of a plug-in for the TextGrid workbench. A more detailed explanation of the single
modules building the architecture follows.

6compare [12], chapter 3.3.2
7http://www.project-gutenberg.org (March 2009)

14

http://www.project-gutenberg.org

3 Design Choices

Wordnet Plug-in

WordNet Research Perspective

Research Plug-in

Editor Relevant Words View Research ViewWordNet Search View

Relevant Words Perspective

TextGrid Workbench (Ecl ipse-RCP)

mostRelevant.html research.html

shows

queries

JavaScript Code
Web Service Clients

ARFF file (tf-idf ranking of
words in every text of the corpus)

arffCache, delivers most relevant
words for given f i lename

RDF Store / WordNet Web Services

parses

Web Server (Tomcat)

Figure 3.1: Overview of the architecture

3.2.1 Web Services

TextGrid mainly uses SOAP for communication between services and the workbench. For the
services in this thesis the implementation of a REST based approach using JSON8 for commu-
nication can be adopted, as they have a different use case. As already mentioned, the “real
time user experience” is important, while the data transferred needs neither authentication
nor a high level error handling. The data is just needed instantly, when the user clicks a link,
even with limited bandwith. JSON has the benefit of being more lightweight than SOAP /
XML for data transfer.

8http://www.json.org/ (March 2009)

15

http://www.json.org/

3 Design Choices

RDF Store

As it was decided to use the RDF version of WordNet, it should be made queryable with
SPARQL. This is typically done by loading the data into a RDF store. There are different op-
tions like Sesame9, Mulgara10 or a Jena based one. In this thesis a Jena based triplestore is
used, which is already included in the TextGrid subversion repository. Jena is a framework
for building Semantic Web applications. It can deal with RDF, OWL, SPARQL, and supports
reasoning.11 Jena offers different options for persistance, namely SDB and TDB being op-
timized for SPARQL queries. SDB uses a relational database as backend. TDB is a newer
development that can be used “as a high performance, non-transactional, RDF store on a
single machine.”12

ArffCache

The text corpus is indexed by the preprocessing service mentioned above. The resulting ARFF
file containing the word statistics is stored on the server. For using it from a client a Web
service is needed to hand out the most relevant words of a given text on demand. Loading and
parsing the ARFF file takes time. So this service should keep the contained data in memory
for instant access. This means the service acts as cache for the ARFF file, allowing queries for
the relevant words of a specific text contained in the corpus.

3.2.2 Web Service Clients

Two Web service clients are also located on the web server. They offer a user interface written
in HTML/CSS, with the programming logic written in JavaScript. So they are downloaded
from the server, but executed by the client. The web service clients are:

1. mostRelevant.html, sending requests to arffCache for showing the most relevant words
of a specific text. It also queries WordNet to display different meanings of the relevant
words and allows to dig into hyper- and hyponyms.

2. research.html, querying the RDF store (WordNet), showing the different meanings of a
word within WordNet. It also offers the possibility of looking up their hyponyms and
hypernyms.

9http://openrdf.org/ (March 2009)
10http://www.mulgara.org/ (March 2009)
11http://jena.sourceforge.net/ (March 2009)
12http://jena.hpl.hp.com/wiki/TDB (March 2009)

16

http://openrdf.org/
http://www.mulgara.org/
http://jena.sourceforge.net/
http://jena.hpl.hp.com/wiki/TDB

3 Design Choices

Both use SPARQL to query the RDF-Store and retrieve responses in JSON.

HTML is used for the representation of the GUI elements, whereas CSS is styling the ele-
ments. CSS adds the flexibility of changing the style of the GUI without changing other source
code.

Web service requests are done in JavaScript utilizing the XMLHttpRequest (Ajax). Responses
are parsed and new elements added to (or removed from) the user interface.

3.2.3 Plug-in for the TextGrid Workbench

As already mentioned the TextGrid workbench additions are distributed in the form of an
Eclipse plug-in, called WordNet Plugin. It offers two views, each of them having a web
browser as the main widget:

1. Relevant Words View shows mostRelevant.html from the webserver

2. WordNet Research View displays research.html.

The views are combined with other views in two new perspectives:

1. Relevant Words Perspective combining the Relevant Words View with an Eclipse editor.
Opening a file in the editor triggers the look up of the filename in mostRelevant.html,
displaying the relevant words for the filename if found.

2. WordNet Research Perspective displaying the Wordnet Search View and the Research View
from the Research Perspective distributed with the TextGrid workbench. If a search term
is entered in the free text search field of the research view it is looked up and shown in
research.html. It allows replacing words from the free text search field with the words
shown in the web client.

Both perspectives can be opened in the TextGrid workbench after downloading and installing
the WordNet plug-in. How to do this is explained in section 5.1.

17

4 Implementation

After deciding on technologies and the overall architecture, this chapter deals with the actual
implementation.

4.1 Preparation

Development Environment

Tomcat1 (version 6.0.18) is running on the server textgrid-ws2.gwdg.de. It is used as a Java web
application server. Web services are deployed there. Axis2 is installed in tomcat for hosting
Axis2 Web services related to the preprocessing service.

Development is done in the Eclipse IDE. The web service clients are tested in Mozilla Firefox2,
with the Firebug extension installed3. Firebug allows amongst other things debugging of Ajax
requests and DOM manipulation with JavaScript.

Build Files

Maven4 is used as build tool, which also resolves dependencies on needed jar files. The build
configuration is done in pom.xml. Maven offers different project templates. The webapp-
template for example sets up the directory structure for a Java web application. This allows
packing as a war file to be deployed on a Java application server (Tomcat in this case). Maven
also has a plug-in to create Eclipse project files, with all library dependencies resolved.

1http://tomcat.apache.org/ (March 2009)
2http://www.mozilla.com/en-US/firefox/firefox.html (March 2009)
3http://getfirebug.com/ (March 2009)
4http://maven.apache.org/ (March 2009)

18

http://tomcat.apache.org/
http://www.mozilla.com/en-US/firefox/firefox.html
http://getfirebug.com/
http://maven.apache.org/

4 Implementation

4.2 Web Services

As already mentioned in section 3.2.1 two Web services are implemented, the RDF store and
arffCache. Before arffCache can be used, a statistics file, the ARFF file, is needed. This section
describes setting up the Web services and how statistics about relevant words are obtained5.

4.2.1 WordNet / RDF Store

The RDF store is checked out from TextGrid subversion6. It provides a REST endpoint for
SPARQL queries and is able to respond in JSON, if requested. It can be configured to use TDB
or SDB as persistance backend. Because of the better performance of TDB, this backend is
used within this thesis.

The RDF version of WordNet is downloaded from the W3C7 and imported in the RDF store.
As the RDF store has a TDB backend this can be done with tdbloader 8 from the TDB distri-
bution. For the purpose of this thesis the following subset of the WordNet RDF download is
sufficient, and imported:

• wordnet-synset.rdf

• wordnet-wordsensesandwords.rdf

• wordnet-glossary.rdf

• wordnet-hyponym.rdf

The total import has an amount of 1.864.697 triples according to tdbstats. Afterwards statistics
for the stats based optimizer 9 are generated with bin/tdbstats from the TDB distribution.
This speeds up execution time for SPARQL queries.

4.2.2 Determining the Relevant Words

The preprocessing service mentioned in 3.1.2 is used to get the tf-idf ranking of WordNet words
in the corpus. So an own reduction service which maps the words to WordNet URIs is needed.

5compare with figure 1.3
6https://develop.sub.uni-goettingen.de/repos/textgrid/branches/rdfstore/(March 2009)
7http://www.w3.org/TR/wordnet-rdf/ (March 2009)
8http://jena.hpl.hp.com/wiki/TDB/Commands#tdbloader (March 2009)
9http://jena.hpl.hp.com/wiki/TDB/Optimizer (March 2009)

19

https://develop.sub.uni-goettingen.de/repos/textgrid/branches/rdfstore/
http://www.w3.org/TR/wordnet-rdf/
http://jena.hpl.hp.com/wiki/TDB/Commands#tdbloader
http://jena.hpl.hp.com/wiki/TDB/Optimizer

4 Implementation

To set up the reduction service the reduce service template is checked out from subversion. The ant
build file is modified10. deploy.serverandport is set to textgrid-ws2.gwdg.de:9090. service.name is
set to WordnetReduce, the service.class to info.textgrid.wordnet.Reduction. Now the class Reduction

can be implemented. It extends the class hausner.bac.reduce.VectorReduceServiceSkeleton and
therefore needs to offer a method reduce, which returns a string for a given input string. It
sets up a HTTP client to execute a SPARQL query to the RDF-Store. The query asks for the
WordNet-URI of the given input. The result is returned.

Now ant can be executed to build this service. The resulting service archive gets deployed in
Axis2 on textgrid-ws2.gwdg.de. The service endpoint is now located at http://textgrid-ws2.
gwdg.de/axis2/services/WordnetReduce and ready for usage from the preprocessing ser-
vice.

Now the server side preparations are finished and a client for the Preprocessing Service can be
implemented. To do so, wsdl2java from the Axis2 distribution is executed with the URL of
the preprocessing service WSDL 11 to generate the service client stubs. These are used in a
new Java class with a main-method, that initializes the stub and sets the parameters:

• reduceEndpoints

• normalization of the return matrix

• file

reduceEndpoints takes an array of endpoint-addresses for reduction services. Three services
are executed in a specified order. First StopWordReduce is called to remove irrelevant words
12. Then StemmerReduce returns the elementary form of the given word 13. Finally Wordne-
tReduce comes into action.

The resulting matrix is set to tf-idf using the normalization parameter. The location of the zip
file containing the corpus can be declared using the file parameter. As a last step the query
execution is triggered through the PreprocessService method.

Running main() returns an ARFF-file, say output.arff, with information about the tf-idf values
per word (WordNet URI) of each text found within the zip-file.

10according to [12], p. 34, chapter 4.7.2
11http://textgrid-ws2.gwdg.de/axis2/services/PreprocessingService?wsdl
12e.g. and, or, the,...
13e.g. car for cars

20

http://textgrid-ws2.gwdg.de/axis2/services/WordnetReduce
http://textgrid-ws2.gwdg.de/axis2/services/WordnetReduce

4 Implementation

4.2.3 arffCache

For implementing arffCache JAX-RS [10] is used. JAX-RS provides a convenient way of de-
scribing RESTful Web service endpoints with Java annotations14. This leads to better read-
ability and, thus, better maintainability of the source code. Further JSON output is already
contained in the specification. The JAX-RS implementation used here is CXF15.

Maven is used to generate the basic structure of a Web service. The resulting directories and
files created are shown below. The file pom.xml is modified to reflect the dependencies of
this project, which should be a JAX-RS Web service using Weka. Maven can now keep track
of the dependencies and download needed jars automatically. Weka.jar is not available in the
maven-repositories, so it needs to be downloaded 16 and manually added to the local maven
repository.

1 arffcache
2 |-- pom.xml
3 ‘-- src
4 ‘-- main
5 |-- resources
6 ‘-- webapp
7 |-- WEB-INF
8 | ‘-- web.xml
9 ‘-- index.jsp

Maven is able to create Eclipse project templates, setting dependencies and Eclipse config-
uration automatically. After template generation the resulting project is imported into the
Eclipse workspace. The class info.textgrid.arffcache.Rest is added, which is the entry point
for the web clients implemented later on.

Rest.java is a JAX-RS annotated web service. The method getMostRelevant() is added, provid-
ing the following functionality:

• reacting to GET-Requests

• taking the textfile to be queried for and the number of words to be returned as parame-
ters

• returning a JSON encoded String

ArffUtils utilizes Weka, which offers functionality for working with ARFF-files and dealing
with the contained data. The method getRelevantWords gets the row from the data belonging
to the filename queried for. With the help of TiValue, which implements a way to compare

14http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html (March 2009)
15http://cxf.apache.org/ (March 2009)
16http://www.cs.waikato.ac.nz/~ml/weka/ (March 2009)

21

http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html
http://cxf.apache.org/
http://www.cs.waikato.ac.nz/~ml/weka/

4 Implementation

tf-idf values, the numWords highest tf-idf rankings are extracted. A JSONObject is filled with key-
value pairs, being the WordNet-URI as key, and the tf-idf-ranking as value. This object is
returned.

Finally the Web service is configured with the file web.xml. It is modified to declare how the
web-context root (“/”) should be handled, more details are defined in beans.xml. The file
beans.xml needs to be created, including the information that the class info.textgrid.arffcache

.Rest should act as a REST endpoint.

1 arffcache
2 |-- pom.xml
3 ‘-- src
4 ‘-- main
5 |-- java
6 | ‘-- info
7 | ‘-- textgrid
8 | ‘-- arffcache
9 | |-- ArffUtils.java

10 | |-- Rest.java
11 | ‘-- TiValue.java
12 |-- resources
13 ‘-- webapp
14 ‘-- WEB-INF
15 |-- beans.xml
16 ‘-- web.xml

The final directory structure is shown above. Now maven is run again to create the arrf-
Cache.war. After deploying this on the server, the endpoint can be tested:

1 http://textgrid-ws2.gwdg.de/arffcache/service/relevantWords/163.txt/2

the JSON response is:

1 {
2 "http:\/\/www.w3.org\/2006\/03\/wn\/wn20\/instances\/word-fairy" : 0.26900176663175673,
3 "http:\/\/www.w3.org\/2006\/03\/wn\/wn20\/instances\/word-elf" : 0.433097815666239
4 }

Read “elf” is most relevant word in 163.txt with an tf-idf value of 0.43 .

22

4 Implementation

4.3 Web Clients

With the necessary Web services in place, the Web service clients can be implemented. These
are also located on the web server, but they are mainly written in JavaScript.

A JavaScript framework, namely MooTools17, is used. JavaScript frameworks in general hide
the complexity of cross browser JavaScript development, and provide utility methods for
Ajax communication and DOM manipulation. MooTools consists of core functions for Ajax
requests, adding and removing elements from the webpage. It also offers methods for creat-
ing effects. It also provides some widgets based on the core, like the accordion.

4.3.1 Creating Web Client Project Structure

A new web project is created with maven, called “wordnetWebclients”. The resulting direc-
tory structure is the same as already shown in section 4.2.3. The MooTools core JavaScript li-
brary and MooTools More including the features Color, Slider and Accordion are downloaded.
The retrieved libraries mootools-1.2.1-core-nc.js and mootools-1.2-more.js are placed in a new
directory named js below the webapp directory. Further directories created are css, which
contains CSS files and img for images. The directory structure is now:

1 wordnetWebclients
2 |-- pom.xml
3 ‘-- src
4 ‘-- main
5 |-- resources
6 ‘-- webapp
7 |-- WEB-INF
8 | ‘-- web.xml
9 |-- css

10 |-- img
11 |-- index.jsp
12 ‘-- js
13 |-- mootools-1.2-more.js
14 ‘-- mootools-1.2.1-core-nc.js

17http://mootools.net/ (March 2009)

23

http://mootools.net/

4 Implementation

4.3.2 mostRelevant.html

word 1

word 2
word 3

explanation word 1

slider wordlist

} collapsed

shown

Figure 4.1: Layout of mostRele-
vant.html

A new file mostRelevant.html is created and placed in
the webapp folder. It contains a web client combining
the data available from the WordNet RDF store and
arffCache. It is a basic XHTML18 file which defines
two boxes in the body section. These are handled
by JavaScript later on (see figure 4.1). One contains
a MooTools slider19 for adjusting the number of rel-
evant words shown. The other one is used to dis-
play the relevant words. The list of relevant words
is handled by a MooTools accordion20, only showing
one word explanation at once, while the others are col-
lapsed (compare with figure 4.1). In the header section
of the HTML file the JavaScript libraries (mootools,
mostRelevant.js) and a CSS file (mostRelevant.css) are
included.

Now a JavaScript file mostRelevant.js is created in the directory js. It contains the actual pro-
gram to be run, when the HTML file is loaded. Also it offers functions for communication
with the web services and for adding elements to the page.

The first function implemented is handleRequest, responsible for parsing the request header21.
It checks if a filename is requested and extracts its name.

The function showRelevantWords, taking the parameter filename, sets up a new MooTools accor-
dion object, responsible for managing the word list. This includes methods to add words or
their explanations, handling user interaction, showing and hiding explanations and provid-
ing a sliding effect when switching the selected word. After creating accordion, the function
showRelevantWords sends a JSON request to arffCache, asking for the relevant words belong-
ing to the filename. ArffCache responds with corresponding WordNet URIs and the tf-idf
ranking. The words are extracted from the URIs, and added to the accordion (see figure 4.2).
The tf-idf ranking is used to modify the brightness of the background color: the higher the
ranking, the brighter the color. The base background color is a shade of blue.

The accordion object is extended with the functionality to request further explanations for
every word, if not yet loaded (compare figure 4.3). These explanations are WordNet glossaries
for all meanings of the words. So if a word is clicked, and the explanations were already

18http://www.w3.org/TR/xhtml11/ (March 2009)
19http://mootools.net/docs/Plugins/Slider
20http://mootools.net/docs/Plugins/Accordion
21 e.g. http://.../mostRelevant.html?filename=163.txt

24

http://www.w3.org/TR/xhtml11/
http://mootools.net/docs/Plugins/Slider
http://mootools.net/docs/Plugins/Accordion

4 Implementation

Relevant Words Web Cl ient Web Server

mostRelevant.jsmostRelevant.html
arffCache

User

show words
for f i lename showRelevantWords f i lename

wordsaddRelevantWord

wordl ist

add

Figure 4.2: Request and show relevant words for a given filename

loaded, this information is displayed. If the box, which should contain the information is not
filled with content yet, the function getGloss is called.

GetGloss sends a SPARQL query via Ajax to the WordNet RDF-Store. The query asks for all
wordsenses of the word, and the corresponding glossaries. When the response arrives, new
elements are added to the explanation box. These are:

• all wordsenses

• their glossaries

• two links titled hypernyms and hyponyms

The links hypernyms and hyponyms (see figure 4.6) offer further functionality. They get an
onclick handler that triggers the function getRelated. The WordNet URI of the wordsense and
the relation to query for (hypernym or hyponym) are passed as parameters.

getRelated queries the RDF store and retrieves a list of hyper-/hyponyms if it exists. They
are added as links below the hypernym or hyponym link (compare figure 4.7). Clicking one
of them executes the function addWord, which adds the word to the top of the accordion. It
gets a different background color (orange) so it is easy to determine, that it does not directly
belong to the relevant words (as shown in figure 4.8). Being in the accordion, it is handled the
same way as the other entries. This means clicking on it also triggers a request and adds the
explanation, if the data is not yet present.

If a word from the hyper-/hyponym list is already in the accordion, clicking on it causes
highlighting its entry.

25

4 Implementation

Relevant Words Web Cl ient Web Server

mostRelevant.js
mostRelevant.html

RDF store

User
wordlist

show
explanation

already
loaded?

yes: show
explanation

no: get explanation SPARQL query

response
add & show
explanation

Figure 4.3: Load and/or show word explanation

A MooTools slider is added, that allows choosing a number of relevant words between 1 and
20 to be shown. It just resets the internal variable for numWords and then triggers the function
showRelevantWords again. The accordion is emptied and refilled with numWord words.

4.3.3 Implementing research.html

word 1
word 2
word 3

wordlist
explanation
word 2

explanations

active

Figure 4.4: Layout of research.html

The research web client has many similarities
with the relevant words webclient. Its basic struc-
ture is contained in the XHTML file research.html,
the layout in research.css, the JavaScript program
in research.js. The file research.html shows two
boxes, one for the list of words, one for their ex-
planations (see figure 4.4).

reseach.js also has a function handleRequest, which
is responsible for checking the request. If the key
show is set its values are handled. The values may
be a list of words, split by the character “|”. If a
list of words is given, each word is passed to the
function addWord.

The function addWord adds a new element containing the word to the wordlist. Then a SPARQL
request to the RDF store is made, querying for the word and its glossaries.

26

4 Implementation

Figure 4.5: Page after loading Figure 4.6: Elf is clicked

Figure 4.7: Hypernyms and hyponyms
are selected

Figure 4.8: Sandman is added

If the entered word is not found in WordNet, the class notInWordnet is applied to its wordlist
entry. It is shown stroked as defined in mostRelevant.css. A corresponding entry is added to
the explanations with the text “not in wordnet”.

If the entered word is found, the glossaries for its meanings are added to the explanations,
each with two links below labeled “hypernyms” and “hyponyms”. These are connected with
an onclick event, that triggers the function getRelated with either the hypernym or hyponym.
This function works exactly the same way as the one already described in section 4.3.2. So
clicking on a link leads to a comma separated list of words below the link. Clicking on a word
from that list triggers the function addWord.

Only one explanation is shown at the same time. It is recognizable in the wordlist which
one is visible (compare with figure 4.9). The other explanations are hidden. Clicking another
word removes the class active from the former active while setting the class of the clicked
word’s element to active. Further the former active words explanation is hidden while the
new active explanation is set to be visible. This gives the user the feeling of switching tabs.
This impression is supported by the CSS definition of the active class. This defines a white

27

4 Implementation

background and lets the element pad over the border of the explanation box (as visible in 4.9).
This clarifies that active word and explanation belong together. Further the word contained
in the active element is set to bold. Inactive elements are shown with a gray background and
normal font weight.

Every “tab” has an icon x (img/x.gif) on the left. Clicking it triggers the function removeWord. It
removes a given word and its explanation from the page.

Example:
http://textgrid-ws2.gwdg.de/wordnetWebclients/research.html?show=tree|car|ape

Figure 4.9: research.html shows the words tree, car and ape

Every change of the wordlist is reflected in the statusbar by the function words2Statusbar. It is
called every time a word is added or removed from the list. It sets the statusbar to show the
entry wnwords: and a list of all words, separated by the character “|” 22. Statusbar messages set
by JavaScript are not shown anymore by modern browsers (security issues), but this function-
ality is needed for the TextGrid workbench integration of research.html, described in section
4.5.1.

4.4 Implementing the WordNet Plug-in Structure

As the TextGrid workbench is Eclipse-based, integration of new features is done with Eclipse
plug-ins. Writing of Eclipse plug-ins can be done with the version “Eclipse for RCP/Plug-in
Developers” 23.
22example: wnwords:car|tree|ape
23http://www.eclipse.org/downloads/packages/eclipse-rcpplug-developers/ganymedesr2 (March 2009)

28

http://textgrid-ws2.gwdg.de/wordnetWebclients/research.html?show=tree|car|ape
http://www.eclipse.org/downloads/packages/eclipse-rcpplug-developers/ganymedesr2

4 Implementation

The browser

The web clients are shown in the web browser widget of the SWT library. It is able to dis-
play HTML and execute JavaScript. Therefore it utilizes an underlaying browser engine. The
TextGrid workbench comes already bundled with XULRunner24. The browser widget
org.eclipse.swt.browser.Browser has the methods setUrl() and execute() which are further used.

setUrl() loads the webpage given as argument.
execute() executes JavaScript given as argument.

Communication between browser widget and Eclipse is very limited, but there are ways to
work around this. To get information from JavaScript executed in the browser widget the
statusbar can be used, with a listener on statusbarchanged()25.

Creating a plug-in

A new plug-in project can be created by selecting Plug-in Project in the New dialog of Eclipse.
In the wizard a project name “info.textgrid.lab.wordnet” and other parameters can be set. As
a basic template Plug-in with a view is chosen, which sets up a sample view that can be edited
later. Clicking Finish creates the new plug-in project, including needed files and directories.

1 info.textgrid.lab.wordnet
2 |-- META-INF
3 | ‘-- MANIFEST.MF
4 |-- build.properties
5 |-- icons
6 | ‘-- sample.gif
7 |-- plugin.xml
8 ‘-- src
9 ‘-- info

10 ‘-- textgrid
11 ‘-- lab
12 ‘-- wordnet
13 |-- Activator.java
14 ‘-- views
15 ‘-- SampleView.java

24a Mozilla product, which has the same rendering engine as firefox https://developer.mozilla.org/en/
XULRunner

25As the TextGrid workbench is bundled with XULRunner now, it would also be possible to use the XPCOM
interface http://www.eclipse.org/swt/faq.php#howusejavaxpcom (March 2009)

29

https://developer.mozilla.org/en/XULRunner
https://developer.mozilla.org/en/XULRunner
http://www.eclipse.org/swt/faq.php#howusejavaxpcom

4 Implementation

4.4.1 The Relevant Words Perspective

The Relevant Words View

Relevant Words View

org.eclipse.swt.Browser

http://.../wordnetWebclient/mostRelevant.html

Figure 4.10: Schema: Relevant Words View

The class SampleView is replaced by MostRelevantView, which extends ViewPart and therefore has
the mandatory functions createPartControl and setFocus. createPartControl is important, as it
defines the view layout. A private member wnBrowser of the type org.eclipse.swt.browser.Browser

is added to the class. Initializing wnBrowser is done in createPartControl. The url is set to
mostRelevant.html26.

The view needs a way to find out if an editor is shown in the workbench and which textfile is
opened in the editor. This is done with the help of an IPartListener2 which gets notified every
time the user switches a view in the workbench. If the now active part of the workbench is of
the type org.eclipse.ui.DefaultTextEditor, the execute method of the wnBrowser object is called. It
executes methods that are embedded in the JavaScript of the website shown in the browser.
The name of the opened file is passed to the method showRelevantWords. This triggers function-
ality of mostRelevant.js, already described in section 4.3.2, resulting in the possibility of seeing
the relevant words for the opened text, if its name is found within arffCache.

Adding the Perspective

As the view is available now, a perspective is created combining editor and Relevant Words
View in one layout for better usability. This is done by adding a new package info.textgrid.lab.

wordnet.perspectives and a class WordnetEditorPerspective to the package. WordNetEditorPerspective

26http://textgrid-ws2.gwdg.de/wordnetWebclients/mostRelevant.html

30

http://textgrid-ws2.gwdg.de/wordnetWebclients/mostRelevant.html

4 Implementation

Figure 4.11: Relevant Words Perspective

implements IPerspectiveFactory. The method createInitialLayout is responsible for arranging
the views. Here it is stated, that the MostRelevantView should be at the top right of the editor
area.

Now plugin.xml is edited to tell Eclipse that a new perspective exists. Therefore a new exten-
sion with the point org.eclipse.ui.perspectives is created. A perspective with the name Relevant
Words Perspective, the class and an id is defined. The result can be seen in figure 4.11.

4.5 The WordNet Research Perspective

The WordNet Research View is added to the Research Perspective of the TextGrid workbench.
It is shown on the right side of the Search View and reacts to user input. Entered words are
displayed in research.html. For this functionality WordNet Research View needs to be notified
of text changes in Search View and get hold of its content. The entered text is analyzed to
display new entered words.

31

4 Implementation

Modification of SearchView

Search View needs to be able to notify other plug-ins when the user enters text in the free text
search field. This is typically done using listeners27. Search View obtains the possibility to
attach listeners to it. This is done by adding the publicly accessible methods
addSearchTextChangedListener and removeSearchTextChangedListener to the class SearchView. Other
plug-ins can register own listeners with these functions and implement a functionality to be
executed in case the listener is called.

SearchView has a private member, that holds listeners added to the view 28. searchText has a
ModifyListener attached, which calls the method notifySearchTextChangedListeners. This method
is implemented to send an event to all listeners from the ListenerList. This means all listeners
are notified when searchText changes.

If another plug-in receives this event, it may want to know the exact text entered. Also it
may want to change the entered text. To make this possible the methods setSearchText and
getSearchText are added to the view, which are simple get/set methods for the private class
member searchText.

4.5.1 WordNet Research View

WordNet Research View

org.eclipse.swt.Browser

http://.../wordnetWebclient/research.html

Buttons

Figure 4.12: Schema: WordNet Research View

WordnetSearchView consists of a browser in which research.html is displayed. Also shown are
some buttons which offer further functionality (see figure 4.12). The class WordnetSearchView is
27Listeners in eclipse implement the interface IListener, Eclipse takes care of the handling. The interaction is

following the observer pattern.
28as in http://blog.eclipse-tips.com/2008/12/listenerlist-better-way-to-manage-your.html

32

4 Implementation

created in the package info.textgrid.lab.wordnet.views. It extends ViewPart, and has a private
member browser. In the method createPartControl the browser is set up with the url set to
research.html.

A listener is registered at Search View it to be notified if the event SearchTextChanged occurs. In
this case the search text entry is read with the getSearchText method of Search View. If the text
entered ends with a space, the new word is passed to the addWord function of research.html in
the browser. Now the functionality is in place to show every word entered (and finished with
a space after it) in research.html. This process is also illustrated in figure 4.13.

Event: SearchTextChanged

getSearchText()

isWordComplete == t rue

Search View

return SearchText entry

WordNet Research V iew Browser

WordNet Web Client
(research.html
/ research.js)

addWord

Figure 4.13: Interaction between Search View and WordNet Research View

Setting words in Search View

Another desirable feature is the possibility to replace the search text entry from Search View
with the words shown in research.html. This includes the need for finding out which words are
actually shown in research.html. As already mentioned in section 4.3.3, research.html appends
the list of words shown to the statusbar. So a StatusTextListener is added to the browser, which
is called every time the statusbar changes. In this case the statusbar string is read. If it starts
with wnwords: the words listed are used to replace the array wnWords of the WordnetSearchView-
Object. Thus it is ensured that the same words shown in research.html are always also listed
in the array wnWords (compare with figure 4.14).

Two buttons are added to Wordnet ResearchView. One push button labeled “replace search
with words” and a radio buttons labeled “live replace”.

The ”replace search with words“ button triggers the method words2SearchEntry if clicked. This
method replaces the search text entry from Search View with the words listed in wnWords (as
shown in figure 4.14).

33

4 Implementation

WordNet Research V iew

Browser

WordNet Web Cl ient
(research.html / js)

User

add a word word to statusbar
Event: statusbar
changed

wordlist (wnWords)

replace
 words

Search View

set search text with wordlisthit button: replace search with wordlist

Figure 4.14: Achieving consistency of words in research.html and Wordnet Research View. Set-
ting words in Search View

The check button “live replace” sets the class-variable liveReplace to true, and disables the
other button. If liveReplace is true, the statusbarChangedListener calls words2SearchEntry on ev-
ery statusbar change. This results in the effect that with every change of the wordlist in
research.html, the search term of SearchView is also changed. Thus, they are both always in the
same state.

4.6 Integration into TextGrid-Workbench

The plugin.xml, delivered with every Eclipse plug-in defines the additions the plug-in con-
tributes to an Eclipse product. This is done via so called “extension points”, containing the
information which parts of the workbench should be extended, and how new functionality
should integrate.

The WordNet plug-in extends the Workbench with the contribution of

• two views, WordNet Research View and Relevant Words View

• two perspectives , WordNet Research Perspective and Relevant Words Perspective

These extensions are defined in plugin.xml by pointing to the Java classes which implement
them.

34

5 Evaluation and Conclusion

5.1 Usage

Figure 5.1: Open Perspec-
tive button

To use the finished plug-in an installation of the TextGridLab beta
is needed. This can be downloaded from http://www.textgrid.
de/beta.html . The file info.textgrid.lab.wordnet_1.0.0.jar can be
retrieved from http://lubl.de/tglab/. It needs to be placed in
the folder named plugins from the unzipped TextGridLab. After
starting textgridlab executable the welcome screen can be closed.
Login is not required for using the WordNet plug-in. Now a click
on the open perspective button (see figure 5.1) offers two new per-
spectives, called Wordnet Research Perspective and Relevant Words
Perspective.

1. Relevant Words Perspective

For testing this perspective the corpus.zip file from http://lubl.
de/tglab needs to be downloaded and unzipped. Now the text
files contained can be opened with the menu entry “File->Open File” in the Relevant Words
Perspective. The most relevant words are displayed in the view on the right. They are clickable
for further research. The slider at the top allows adjusting the number of words shown in a
range of one to twenty.

2. Wordnet Research Perspective

Entering words in the field “Search for...” triggers displaying the word in WordNet Research
View, after the space key is hit finishing the word. Words are displayed in tabs and can be
looked up by clicking them. The search text entry can be replaced either by clicking “replace
search with words” or by selecting “live replace”.

35

http://www.textgrid.de/beta.html
http://www.textgrid.de/beta.html
http://lubl.de/tglab/
http://lubl.de/tglab
http://lubl.de/tglab

5 Evaluation and Conclusion

5.2 Evaluation

User Interface

The user interface is intuitive. Only a few GUI elements (like tabs, accordion) are shown.
These are introduced in a reasonable way. The applied effects emphasize the sense of the ap-
plication without distraction. The choice for a HTML/CSS/JavaScript based interface offered
design flexibility. The performance of the application is good. The asynchronous loading
gives the impression of instant data availability. It is well integrated in the TextGrid work-
bench.

Combining determination of relevant words with WordNet

The usage of WordNet in the process of corpus indexing changes the output. For example in
the book “Jungle Tales of Tarzan”1 the word list changes as shown in the following tabular.

WordNet w/o WordNet
1 ape tarzan
2 jungle ape
3 hyena teeka
4 fang taug
5 tribe numa
6 bull bukawai
7 warrior balu
8 witch tibo
9 panther mbonga
10 lion jungle
11 spoor momaya
12 spear sheeta

Noticeable is that with the usage of WordNet (a thesaurus) names lose relevance. This may
be a wanted or unwanted effect. For the use case developed in this thesis it is a wanted effect.
The pre-condition is that the text is unknown to the user, so names would not help to get a
quick overview.

1106.txt in corpus zip, or http://www.gutenberg.org/etext/106 (March 2009)

36

http://www.gutenberg.org/etext/106

5 Evaluation and Conclusion

5.3 Possible Further Work

Combining RESTful web services and interlinking data

Especially the Ajax based web client architecture may help to use different data sources or
(RESTful) services in a so called “Web 2.0 mashup” style2. SPARQL and RDF play a special
role here, as they are already standardized for querying data across different domains.

As WordNet URIs are also used in other contexts, a further possibility is interconnecting dif-
ferent databases to further enrich the data shown. The DBpedia 3 database for example can
already be queried with SPARQL for WordNet URIs and is also interlinked with further data
sets4. This data could also be shown on demand.5

Expanding WordNet usage

WordNet offers more relations between words than just hypernyms and hyponyms. Relations
like meronyms or antonyms could also be made browsable by the user. The associated data
sets would need to be imported in the RDF store and required SPARQL queries added to the
WordNet web clients.

SKOS

An interesting option would be the integration of SKOS based thesauri. This could enable
easier extension to other languages and domains, as it is likely that with the finalisation of
the SKOS recommendation more SKOS based thesauri will show up, which could easily be
imported.

Extending Relevant Words View

To really use the Relevant Words View the user should be able to index an own corpus. For
example by clicking on a button “index corpus” in the navigator of the TextGrid workbench.
Further arffCache should handle more than just one corpus index. These should not be kept
in memory any more, but could go into a relational database.

2an introduction to mashups: http://www.soamag.com/I18/0508-1.asp (April 2009)
3http://dbpedia.org/ (April 2009)
4http://wiki.dbpedia.org/Interlinking (April 2009)
5more about interlinking data at http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/
LinkingOpenData (April 2009)

37

http://www.soamag.com/I18/0508-1.asp
http://dbpedia.org/
http://wiki.dbpedia.org/Interlinking
http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

5 Evaluation and Conclusion

5.4 Conclusion

This thesis shows how TextGrid could adopt different techniques for further enhancements.
One has to differentiate between the technical and theoretical part of this work. Theoritically
shown are ideas for integrating methods from information retrieval and a way to integrate an
RDF based semantic network in the workbench. Technically shown is an architecture which
combines RESTful web services within an Ajax interface, making use of unified identifiers for
resources, combining so called “Web 2.0” with semantic web technologies. The modularity
of the taken approach allows extension of the components and further recombination in new
services.

38

A Abbreviations

API Application Programming Interface

ARFF Attribute-relation file format

CSS Cascading Style Sheet

DOM Document Object Model

GUI Graphical User Interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

OWL Web Ontology Language

RAM Random Acess Memory

REST Representional State Transfer

RDF Resource Description Framework

SOAP Simple Object Protocol

SPARQL SPARQL Protocol and RDF Query Language

XML Extensible Markup Language

WSDL Web Service Description Language

39

B List of Figures

1.1 Relevant Words Perspective . 2
1.2 WordNet Research Perspective . 3
1.3 Interaction of both theses . 4

2.1 Graph showing relations for the word primate@en-US (WordNet RDF) 7
2.2 Wordsenses for the word primate shown in web client 8

3.1 Overview of the architecture . 15

4.1 Layout of mostRelevant.html . 24
4.2 Request and show relevant words for a given filename 25
4.3 Load and/or show word explanation . 26
4.4 Layout of research.html . 26
4.5 Page after loading . 27
4.6 Elf is clicked . 27
4.7 Hypernyms and hyponyms are selected . 27
4.8 Sandman is added . 27
4.9 research.html shows the words tree, car and ape 28
4.10 Schema: Relevant Words View . 30
4.11 Relevant Words Perspective . 31
4.12 Schema: WordNet Research View . 32
4.13 Interaction between Search View and WordNet Research View 33
4.14 Achieving consistency of words in research.html and Wordnet Research View. Set-

ting words in Search View . 34

5.1 Open Perspective button . 35

40

C Bibliography

[1] JSON homepage. http://www.json.org (March 2009).

[2] TextGrid Homepage. http://www.textgrid.de/ (March 2009).

[3] Attribute-Relation File Format (ARFF). http://www.cs.waikato.ac.nz/ ml/weka/arff.html
(March 2009).

[4] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval. Addison
Wesley, 1999.

[5] Jeremy J. Carroll and Graham Klyne. Resource description framework (RDF):
Concepts and abstract syntax. W3C recommendation, W3C, February 2004.
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/ (March 2009).

[6] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana.
Web services description language (WSDL) 1.1. W3C note, W3C, March 2001.
http://www.w3.org/TR/2001/NOTE-wsdl-20010315 (March 2009).

[7] Christiane Fellbaum, editor. WordNet. An Electronic Lexical Database. The MIT Press, 1998.

[8] Aldo Gangemi, Guus Schreiber, and Mark van Assem. RDF/OWL representation of
WordNet. W3C working draft, W3C, June 2006. http://www.w3.org/TR/2006/WD-
wordnet-rdf-20060619/ (March 2009).

[9] Jesse James Garrett. Ajax: A new approach to web applications, February 2005.
http://www.adaptivepath.com/ideas/essays/archives/000385.php (March 2009).

[10] Marc Hadley and Paul Sandoz. JAX-RS: The Java API for RESTful Web Services.
Java Specification Request (JSR) 311, October 2008. http://jcp.org/en/jsr/detail?id=311
(March 2009).

[11] Karin Haenelt. Information retrieval modelle. vektormodell. kursfolien. October 2006.
http://kontext.fraunhofer.de/haenelt/kurs/folien/Haenelt_IR_Modelle_Vektor.pdf
(March 2009).

[12] Roman Hausner. Semantic Text Mining - linguistische Tools im Preprocessing von Text
Mining Methoden. April 2009.

[13] Yves Lafon and Nilo Mitra. SOAP version 1.2 part 0: Primer (second edition). W3C
recommendation, W3C, April 2007. http://www.w3.org/TR/2007/REC-soap12-part0-
20070427/ (March 2009).

41

http://www.json.org
http://www.textgrid.de/
http://www.cs.waikato.ac.nz/~ml/weka/arff.html
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2006/WD-wordnet-rdf-20060619/
http://www.w3.org/TR/2006/WD-wordnet-rdf-20060619/
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://jcp.org/en/jsr/detail?id=311
http://kontext.fraunhofer.de/haenelt/kurs/folien/Haenelt_IR_Modelle_Vektor.pdf
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/

C Bibliography

[14] Alistair Miles and Sean Bechhofer. SKOS simple knowledge organiza-
tion system reference. W3C candidate recommendation, W3C, March 2009.
http://www.w3.org/TR/2009/CR-skos-reference-20090317/ (March 2009).

[15] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. RESTful Web Ser-
vices vs. Big Web Services: Making the Right Architectural Decision. In 17th
International World Wide Web Conference (WWW2008), Beijing, China, April 2008.
http://www.jopera.org/docs/publications/2008/restws (March 2009).

[16] Stefan Büdenbender Fotis Jannidis Marc W. Küster Christoph Ludwig Wolf-
gang Pempe Thorsten Vitt Werner Wegstein Andrea Zielinski Peter Gi-
etz, Andreas Aschenbrenner. Textgrid and ehumanities. Science, 2005.
http://www.textgrid.de/fileadmin/TextGrid/veroeffentlichungen/TextGrid-
Amsterdam-2006-final.pdf (March 2009).

[17] Andy Seaborne and Eric Prud’hommeaux. SPARQL query language for RDF. W3C
recommendation, W3C, January 2008. http://www.w3.org/TR/2008/REC-rdf-sparql-
query-20080115/ (March 2009).

[18] Wordnet - a lexical database for the english language. http://wordnet.princeton.edu/
(March 2009).

42

http://www.w3.org/TR/2009/CR-skos-reference-20090317/
http://www.jopera.org/docs/publications/2008/restws
http://www.textgrid.de/fileadmin/TextGrid/veroeffentlichungen/TextGrid-Amsterdam-2006-final.pdf
http://www.textgrid.de/fileadmin/TextGrid/veroeffentlichungen/TextGrid-Amsterdam-2006-final.pdf
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://wordnet.princeton.edu/
http://wordnet.princeton.edu/

	1 Introduction
	1.1 Use-Cases
	1.2 Connection with Roman Hausner's Thesis
	1.3 Thesis Organization

	2 Background Knowledge
	2.1 Determining the Relevance of a Word
	2.2 WordNet RDF
	2.3 Web Services, REST, Ajax and JSON
	2.4 Eclipse / Plug-in-Technology
	2.5 The TextGrid Workbench

	3 Design Choices
	3.1 Objective and Requirements
	3.1.1 Further Requirements
	3.1.2 Meeting the Requirements

	3.2 Defining the Architecture
	3.2.1 Web Services
	3.2.2 Web Service Clients
	3.2.3 Plug-in for the TextGrid Workbench

	4 Implementation
	4.1 Preparation
	4.2 Web Services
	4.2.1 WordNet / RDF Store
	4.2.2 Determining the Relevant Words
	4.2.3 arffCache

	4.3 Web Clients
	4.3.1 Creating Web Client Project Structure
	4.3.2 mostRelevant.html
	4.3.3 Implementing research.html

	4.4 Implementing the WordNet Plug-in Structure
	4.4.1 The Relevant Words Perspective

	4.5 The WordNet Research Perspective
	4.5.1 WordNet Research View

	4.6 Integration into TextGrid-Workbench

	5 Evaluation and Conclusion
	5.1 Usage
	5.2 Evaluation
	5.3 Possible Further Work
	5.4 Conclusion

	A Abbreviations
	B List of Figures
	C Bibliography

